KLASIFIKASI JUDUL SKRIPSI MAHASISWA BERDASARKAN KONSENTRASI PROGRAM STUDI MENGGUNAKAN ALGORITMA NAIVE BAYES
DOI:
https://doi.org/10.54840/jcstech.v5i1.352Abstract
This study discusses the development of an automatic classification model for student thesis titles based on study program concentrations using the Naive Bayes algorithm. The background of this research is the increasing number of thesis titles produced each year, which complicates the classification and management process if done manually. The Naive Bayes algorithm was chosen for its simplicity, efficiency, and suitability for text classification tasks. The dataset comprises thesis titles from students of the D4 Software Engineering Program with six areas of concentration: Software Engineer, Mobile Developer, Full Stack Developer, UI/UX Designer, Software Quality Assurance Engineer, and Technopreneur. The data underwent several preprocessing stages including tokenization, stopword removal, and stemming. The model was trained and tested using a train-test split approach and evaluated using accuracy, precision, recall, and f1-score metrics. The results indicate that the Naive Bayes algorithm can classify thesis titles into their appropriate concentrations with an accuracy of 65%. This research contributes to improving the efficiency of academic administration management and serves as a foundation for developing AI-based classification systems in higher education
References
Dhuhita, W. M. P., Darmawan, M. F. K. A., Triana, L., & Ankisqiantari, N. (2022). Perbandingan Algoritma Supervised Learning untuk Klasifikasi Judul Skripsi Berdasarkan Bidang Dosen. Jurnal Teknik Informatika Dan Sistem Informasi, 8(2), 427–437. https://doi.org/10.28932/jutisi.v8i2.4960
Ilmiah, J., & Komputer, I. (2024). Penerapan Algoritma Naive Bayes Classifier. 3(1), 15–22.
Kurniadi, D. (2024). The application of naive bayes method for final project topic selection within the project-based learning framework in the data mining course. Jurnal EDUCATIO: Jurnal Pendidikan Indonesia, 10(1), 243. https://doi.org/10.29210/1202423794
Mubarak, R., Hanafi, M., & Sasongko, D. (2024). Komparasi Performa Naive Bayes Gaussian dan K-NN Untuk Prediksi Kelulusan Mahasiswa dengan CRISP-DM. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(6), 2982–2991. https://doi.org/10.30865/klik.v4i6.1924
Nuraeni, R., Sudiarjo, A., & Rizal, R. (2021). Perbandingan Algoritma Naïve Bayes Classifier dan Algoritma Decision Tree untuk Analisa Sistem Klasifikasi Judul Skripsi. Innovation in Research of Informatics (INNOVATICS), 3(1), 26–31. https://doi.org/10.37058/innovatics.v3i1.2976
Sukriadi, S., Ismail, I., & Andzar, A. M. (2023). Penerapan Text Mining Dalam Klasifikasi Judul Skripsi Yang Diusulkan Mahasiswa Menggunakan Metode Naïve Bayes. Jurnal Ilmiah Sistem Informasi Dan Teknik Informatika (JISTI), 6(2), 184–196. https://doi.org/10.57093/jisti.v6i2.174
Suppa, R. (2023). Comparative Performance Evaluation Results of Classification Algorithm in Data Mining to Identify Types of Glass Based on Refractive Index and It’s Elements. PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik, 8(1), 20. https://doi.org/10.51557/pt_jiit.v8i1.1705
Thesis, B. (2012). Erik Lux Feature selection for text classification with Naive Bayes.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Computer Science and Technology (JCS-TECH)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.