VEHICLE LICENSE PLATE RECOGNITION USING YOLOV8 AND PADDLEOCR

Authors

  • Esadhipa Raif Syihabuddin Universitas Dian Nuswantoro
  • Widia Angela Universitas Dian Nuswantoro
  • Muhammad Naufal Universitas Dian Nuswantoro
  • Ricardus Anggi Pramunendar Universitas Dian Nuswantoro

DOI:

https://doi.org/10.54840/jcstech.v5i2.374

Keywords:

YOLOv8, PaddleOCR, License Plate, Object Detection, Computer Vision

Abstract

This study focuses on developing a computer vision-based vehicle license plate recognition system designed to enhance operational efficiency and support the implementation of real-time intelligent transportation systems. Specifically, the research evaluates the system's performance in detecting and recognizing license plate characters using a two-stage approach: (1) an object detection stage employing the YOLOv8 model to identify plate locations, and (2) a character recognition stage utilizing PaddleOCR for text extraction. Experimental results demonstrate exceptional detection accuracy, with 96.3% precision and 98.7% recall, indicating the system's robustness under varying environmental conditions such as lighting changes and camera angles. However, character recognition accuracy remains relatively low (39.62%), potentially due to input image quality limitations or license plate complexity. These findings highlight the critical need for optimized image pre-processing techniques (including noise reduction, contrast enhancement, and perspective correction) to improve text readability prior to OCR. Future research will explore various image processing methods and alternative model architectures to enhance recognition accuracy and real-time performance stability, enabling effective integration into intelligent transportation applications such as traffic monitoring, automated parking systems, and AI-based law enforcement.

References

Adenekan, T. K. (2024). Advancing Text Digitization : A Comprehensive System and Method for Optical Character Recognition. December.

Al amin, I. H., & Aprilino, A. (2022). Implementasi Algoritma Yolo Dan Tesseract Ocr Pada Sistem Deteksi Plat Nomor Otomatis. Jurnal Teknoinfo, 16(1), 54. https://doi.org/10.33365/jti.v16i1.1522

Althaf Adhari Rachman, & Ivan Maurits. (2023). Sistem Deteksi Pemakaian Masker Pada Wajah Secara Real Time Menggunakan Framework Tensorflow Dan Library Opencv. Jurnal Ilmiah Teknik, 2(1), 49–59. https://doi.org/10.56127/juit.v2i1.496

Andrean, M. N., Shidik, G. F., Naufal, M., Zami, F. Al, Winarno, S., Azies, H. Al, & Putra, P. L. W. E. (2024). Comparing Haar Cascade and YOLOFACE for Region of Interest Classification in Drowsiness Detection. Jurnal Media Informatika Budidarma, 8(1), 272. https://doi.org/10.30865/mib.v8i1.7167

Du, Y., Li, C., Guo, R., Cui, C., Liu, W., Zhou, J., Lu, B., Yang, Y., Liu, Q., Hu, X., Yu, D., & Ma, Y. (2021). PP-OCRv2: Bag of Tricks for Ultra Lightweight OCR System. http://arxiv.org/abs/2109.03144

Du, Y., Li, C., Guo, R., Yin, X., Liu, W., Zhou, J., Bai, Y., Yu, Z., Yang, Y., Dang, Q., & Wang, H. (2020). PP-OCR: A Practical Ultra Lightweight OCR System. http://arxiv.org/abs/2009.09941

Harani, N. H., Prianto, C., & Hasanah, M. (2019). Deteksi Objek Dan Pengenalan Karakter Plat Nomor Kendaraan Indonesia Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Python. Jurnal Teknik Informatika, 11(3), 47–53. https://ejurnal.ulbi.ac.id/index.php/informatika/article/view/658

Kharisma, O. B. (2021). Sistem Identifikasi Plat Nomor Kendaraan Dalam Penerapan Regulasi Pajak Berbasis Citra Digital. JST (Jurnal Sains Dan Teknologi), 10(1), 117–127. https://doi.org/10.23887/jstundiksha.v10i1.32975

Muthusundari, M., Velpoorani, A., Venkata Kusuma, S., L, T., & Rohini, O. k. (2024). Optical character recognition system using artificial intelligence. LatIA, 2, 98. https://doi.org/10.62486/latia202498

Nugroho, Y. (2021). Pelanggaran Lalu Lintas Yang Dilakukan Oleh Anak Ditinjau Dari Undang-Undang Nomor 22 Tahun 2009 Tentang Lalu Lintas Dan Angkutan Jalan. In Fenomena (Vol. 19, Issue 2, p. 246). https://doi.org/10.36841/fenomena.v19i2.1469

Priyankara, M., Gamawelagedara, B., Sattar, M. U., & Hasan, R. (2025). Mitigating Fuel Station Drive-Offs Using AI : YOLOv8 OCR and MOT History API for Detecting Fake and Altered Plates. 1–24. https://doi.org/10.32604/cmc.2025.062826

Rachmawati, F., & Widhyaestoeti, D. (2020). Deteksi Jumlah Kendaraan di Jalur SSA Kota Bogor Menggunakan Algoritma Deep Learning YOLO. Prosiding LPPM UIKA Bogor, 360–370.

Rema, Y. O. L. (2019). Deteksi Plat Nomor Kendaraan Bermotor dengan Segmentasi Gambar. Jurnal Saintek Lahan Kering, 2(1), 20–23. https://doi.org/10.32938/slk.v2i1.794

Ristantyo, L. P., Nugroho, H., & Pramudito, W. A. (2022). Sistem Identifikasi Tanda Nomor Kendaraan Bermotor Indonesia Berbasis Artificial Neural Network. Kilat, 11(2), 149–157. http://jurnal.itpln.ac.id/kilat/article/view/1647

Satya, L., Septian, M. R. D., Sarjono, M. W., Cahyanti, M., & Swedia, E. R. (2023). Sistem Pendeteksi Plat Nomor Polisi Kendaraan Dengan Arsitektur Yolov8. Sebatik, 27(2), 753–761. https://doi.org/10.46984/sebatik.v27i2.2374

Sidik, A. D., & Ansawarman, A. (2022). Prediksi Jumlah Kendaraan Bermotor Menggunakan Machine Learning. Formosa Journal of Multidisciplinary Research, 1(3), 559–568. https://doi.org/10.55927/fjmr.v1i3.745

Sohan, M., Sai Ram, T., & Rami Reddy, C. V. (2024). A Review on YOLOv8 and Its Advancements. May, 529–545. https://doi.org/10.1007/978-981-99-7962-2_39

Sugeng, W., Utoro, R. K., & Prabowo, M. T. (2020). Identifikasi Plat Nomor Kendaraan Dengan Metode Optical Character Recognition Menggunakan Raspberry Pi. Jurnal Informatika, 7(2), 116–125. https://doi.org/10.31294/ji.v7i2.7997

Universitas Lampung. (n.d.). Plat Nomor Computer Vision Project. Roboflow Universe. Retrieved April 20, 2025, from https://universe.roboflow.com/universitas-lampung/plat-nomor-jasfy

Downloads

Published

2025-11-04

How to Cite

Esadhipa Raif Syihabuddin, Widia Angela, Muhammad Naufal, & Ricardus Anggi Pramunendar. (2025). VEHICLE LICENSE PLATE RECOGNITION USING YOLOV8 AND PADDLEOCR. Journal of Computer Science and Technology (JCS-TECH), 5(2), 66–72. https://doi.org/10.54840/jcstech.v5i2.374

Issue

Section

Articles