ANALISIS KINERJA NOISE FILTERING UNTUK MENGHILANGKAN DERAU PADA CITRA SEDIAAN DARAH TIPIS MALARIA

Authors

  • Doni Setyawan Universitas Widya Dharma
  • Istri Sulistyowati Universitas Widya Dharma
  • Agustinus Suradi Universitas Widya Dharma
  • Vina Rizqita Nur Rahma Universitas Widya Dharma

DOI:

https://doi.org/10.54840/jcstech.v5i2.395

Keywords:

noise, median filtering, gaussian filtering, average filtering

Abstract

In automated malaria diagnosis systems, the images resulting from the acquisition process may
contain noise, which can obscure the visual appearance of the Plasmodium. Therefore, noise filtering
techniques are needed to remove noise from the images. This study evaluates the performance of noise
filtering techniques under various noise conditions to determine the most effective method for removing
noise in blood smear images.The research consists of several stages: acquisition of thin blood smear
images, noise addition, noise filtering, and performance comparison of the noise filtering methods. The
image acquisition was carried out using the publicly available MP-IDB malaria dataset. Noise addition was
performed using salt and pepper, Gaussian, and mixed noise. The tested noise filtering techniques include
median filtering, Gaussian filtering, and average filtering. The performance of the noise filtering methods
was assessed using Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR)
measurements.The experimental results show that for blood smear images with salt and pepper noise, the
median filtering method provided the best results with an MSE of 6.51 and a PSNR of 43.13. Visually, the
noise-removed image using median filtering closely resembled the original image. For images with
Gaussian noise, the average filtering method achieved the best performance with an MSE of 31.81 and a
PSNR of 33.19. For images with mixed noise, the median filtering method again provided the best
performance with an MSE of 46.95 and a PSNR of 31.46.

References

Journal on Advanced Science, Engineering and Information Technology, 8(6), 2301–2307. https://doi.org/10.18517/ijaseit.8.6.6514

Nugroho, H. A., Wibawa, M. S., Setiawan, N. A., Herdiana Murhandarwati, E. E., & Budiani Buana, R. L. (2019). Identification of plasmodium falciparum and plasmodium vivax on digital image of thin blood films gf. Indonesian Journal of Electrical Engineering and Computer Science, 13(3), 933–944. https://doi.org/10.11591/ijeecs.v13.i3.pp933-944

Poostchi, M., Silamut, K., Maude, R. J., Jaeger, S., & Thoma, G. (2018). Image analysis and machine learning for detecting malaria. Translational Research, 194, 36–55. https://doi.org/10.1016/J.TRSL.2017.12.004

Rahman, A., Zunair, H., Reme, T. R., Rahman, M. S., & Mahdy, M. R. C. (2021). A comparative analysis of deep learning architectures on high variation malaria parasite classification dataset. Tissue and Cell, 69, 101473. https://doi.org/10.1016/j.tice.2020.101473

Setyawan, D., Wardoyo, R., Wibowo, M. E., & Herdiana Murhandarwati, E. E. (2022). Classification of plasmodium falciparum based on textural and morphological features. International Journal of Electrical and Computer Engineering (IJECE), 12(5), 5036–5048. https://doi.org/10.11591/ijece.v12i5.pp5036-5048

Setyawan, D., Wardoyo, R., Wibowo, M. E., & Murhandarwati, E. E. H. (2022). Improvising Low Contrast Malaria Images Using Contrast Enhancement Techniques on Various Color Models. 2022 Seventh International Conference on Informatics and Computing (ICIC), 1–6. https://doi.org/10.1109/ICIC56845.2022.10006911

Setyawan, D., Wuryandari, A., & Ari Wibowo, R. (2022). PENINGKATAN KUALITAS CITRA MALARIA MENGGUNAKAN METODE CONTRAST ENHANCEMENT BERBASIS HISTOGRAM. JIKO (Jurnal Informatika Dan Komputer), 5(3), 194–200. https://doi.org/10.33387/jiko.v5i3.5237

Tangpukdee, N., Duangdee, C., Wilairatana, P., & Krudsood, S. (2009). Malaria Diagnosis: A Brief Review. The Korean Journal of Parasitology, 47(2), 93–102. https://doi.org/10.3347/KJP.2009.47.2.93

Tek, F. B., Dempster, A. G., & Kale, I. (2009). Computer vision for microscopy diagnosis of malaria. Malaria Journal, 8(1), 1–14. https://doi.org/10.1186/1475-2875-8-153

Tyas, D. A., Hartati, S., Harjoko, A., & Ratnaningsih, T. (2020). Morphological, Texture, and Color Feature Analysis for Erythrocyte Classification in Thalassemia Cases. IEEE Access, 8, 69849–69860. https://doi.org/10.1109/ACCESS.2020.2983155

Downloads

Published

2025-11-04

How to Cite

Setyawan, D., Sulistyowati, I., Suradi, A., & Rizqita Nur Rahma, V. (2025). ANALISIS KINERJA NOISE FILTERING UNTUK MENGHILANGKAN DERAU PADA CITRA SEDIAAN DARAH TIPIS MALARIA. Journal of Computer Science and Technology (JCS-TECH), 5(2), 87–94. https://doi.org/10.54840/jcstech.v5i2.395

Issue

Section

Articles